PEMANAS
Formulasi Kelvin-Planck atau hukum termodinamika kedua menyebutkan bahwa adalah tidak mungkin untuk membuat sebuah mesin kalor yang bekerja dalam suatu siklus yang semata-mata mengubah energi panas yang diperoleh dari suatu reservoir pada suhu tertentu seluruhnya menjadi usaha mekanik. Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah; dengan kata lain, tidak semua proses di alam semesta adalah reversible (dapat dibalikkan arahnya). Sebagai contoh jika seekor beruang kutub tertidur di atas salju, maka salju dibawah tubuh nya akan mencair karena kalor dari tubuh beruang tersebut. Akan tetapi beruang tersebut tidak dapat mengambil kalor dari salju tersebut untuk menghangatkan tubuhnya. Dengan demikian, aliran energi kalor memiliki arah, yaitu dari panas ke dingin. Satu aplikasi penting dari hukum kedua adalah studi tentang mesin kalor.
PENDINGIN
Teori Clausius menyatakan bahwa untuk memindahkan kalor dari tandon dingin ke tandon panas dibutuhkan usaha,sehingga takmungkin untuk memindahkan panas pada tandon dingin ke tandon yang lebih panas tanpa melakukan usaha.
Clausius menyatakan bahwa tidak mungkin untuk mengubah seluruh panas pada tandon panas menjadi usaha.
Sabtu, 05 Juni 2010
GAS IDEAL
SIFAT GAS UMUM
1. Gas mudah berubah bentuk dan volumenya.
2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.
SIFAT GAS IDEAL
1. Gas terdiri atas partikel-partikel dalam jumlah yang besar sekali, yang senantiasa bergerak dengan arah sembarang dan tersebar merata dalam ruang yang kecil.
2. Jarak antara partikel gas jauh lebih besar daripada ukuran partikel, sehingga ukuran partikel gas dapat diabaikan.
3. Tumbukan antara partikel-partikel gas dan antara partikel dengan dinding tempatnya adalah elastis sempurna.
4. Hukum-hukum Newton tentang gerak berlaku.
PERSAMAAN GAS IDEAL DAN TEKANAN (P) GAS IDEAL
P V = n R T = N K T
n = N/No
T = suhu (ºK)
R = K . No = 8,31 )/mol. ºK
N = jumlah pertikel
P = (2N / 3V) . Ek ® T = 2Ek/3K
V = volume (m3)
n = jumlah molekul gas
K = konstanta Boltzman = 1,38 x 10-23 J/ºK
No = bilangan Avogadro = 6,023 x 1023/mol
ENERGI TOTAL (U) DAN KECEPATAN (v) GAS IDEAL
Ek = 3KT/2
U = N Ek = 3NKT/2
v = Ö(3 K T/m) = Ö(3P/r)
dengan:
Ek = energi kinetik rata-rata tiap partikel gas ideal
U = energi dalam gas ideal = energi total gas ideal
v = kecepatan rata-rata partikel gas ideal
m = massa satu mol gas
p = massa jenis gas ideal
Jadi dari persamaan gas ideal dapat diambil kesimpulan:
1. Makin tinggi temperatur gas ideal makin besar pula kecepatan partikelnya.
2. Tekanan merupakan ukuran energi kinetik persatuan volume yang dimiliki gas.
3. Temperatur merupakan ukuran rata-rata dari energi kinetik tiap partikel gas.
4. Persamaan gas ideal (P V = nRT) berdimensi energi/usaha .
5. Energi dalam gas ideal merupakan jumlah energi kinetik seluruh partikelnya.
Dari persarnaan gas ideal PV = nRT, dapat di jabarkan:
Pada (n, T) tetap, (isotermik)
berlaku Hukum Boyle: PV = C
Pada (n, V) tetap, (isokhorik)
berlaku Hukum Gay-Lussac: P/T=C
Pada (n,P) tetap, (isobarik)
berlaku Hukum Gay-Lussac:
V/T= C
Padan tetap, berlaku Hukum
Boyle-Gay-Lussac: PV/T=C
C = konstan
Jadi:
(P1.V1)/T1 = (P2.V2)/T2=...dst.
Hukum I Termodinamika
1. Hukum ini diterapkan pada gas, khususnya gas ideal
PV = n R T
P . DV + -V . DP = n R DT
2. Energi adalah kekal, jika diperhitungkan semua bentuk energi yang timbul.
3. Usaha tidak diperoleh jika tidak diberi energi dari luar.
4. Dalam suatu sistem berlaku persamaan termodinamika I:
DQ = DU+ DW
DQ = kalor yang diserap
DU = perubanan energi dalam
DW = usaha (kerja) luar yang dilakukan
DARI PERSAMAAN TERMODINAMIKA I DAPAT DIJABARKAN:
1. Pada proses isobarik (tekanan tetap) ® DP = 0; sehingga,
DW = P . DV = P (V2 - V1) ® P. DV = n .R DT
DQ = n . Cp . DT ® maka Cp = 5/2 R (kalor jenis pada tekanan tetap)
DU-= 3/2 n . R . DT
2. Pada proses isokhorik (Volume tetap) ® DV =O; sehingga,
DW = 0 ® DQ = DU
DQ = n . Cv . DT ® maka Cv = 3/2 R (kalor jenis pada volume tetap)
AU = 3/2 n . R . DT
3. Pada proses isotermik (temperatur tetap): ® DT = 0 ;sehingga,
DU = 0 ® DQ = DW = nRT ln (V2/V1)
4. Pada proses adiabatik (tidak ada pertukaran kalor antara sistem dengan sekelilingnya) ® DQ = 0 Berlaku hubungan::
PVg = konstan ® g = Cp/Cv ,disebut konstanta Laplace
5. Cara lain untuk menghitung usaha adalah menghitung luas daerah di bawah garis proses.
Catatan:
1. Jika sistem menerima panas, maka sistem akan melakukan kerja dan energi akan naik. Sehingga DQ, DW ® (+).
2. Jika sistem menerima kerja, maka sistem akan mengeluarkan panas dan energi dalam akan turun. Sehingga DQ, DW ® (-).
3. Untuk gas monoatomik (He, Ne, dll), energi dalam (U) gas adalah
U = Ek = 3/2 nRT ® g = 1,67
4. Untuk gas diatomik (H2, N2, dll), energi dalam (U) gas adalah
Suhu rendah
(T £ 100ºK)
U = Ek = 3/2 nRT ® g = 1,67
® Cp-CV=R
Suhu sedang
U = Ek =5/2 nRT ® g = 1,67
Suhu tinggi
(T > 5000ºK)
Tidak mungkin membuat suatu mesin yang bekerja secara terus-menerus serta rnengubah semua kalor yang diserap menjadi usaha mekanis.
T1 > T2, maka usaha mekanis:
W = Q1 - Q2
h = W/Q1 = 1 - Q2/Q1 = 1 - T2/T1
T1 = reservoir suhu tinggi
T2 = reservoir suhu rendah
Q1 = kalor yang masuk
Q2 =kalor yang dilepas
W = usaha yang dilakukan
h = efesiensi mesin
Untuk mesin pendingin:
h = W/Q2 = Q1/Q2 -1 = T1/T2 - 1
Koefisien Kinerja = 1/h
Dalil :
Dari semua motor yang bekerja dengan menyerap kalor dari reservoir T1 dan melepaskan kalor pada reservoir T2 tidak ada yang lebih efisien dari motor Carnot.
BC ; DA = adiabatik
AB ; CD = isotermik
Mesin Carnot terdiri atas 4 proses, yaitu 2 proses adiabatik dan 2 proses isotermik. Kebalikan dari mesin Carnot merupakan mesin pendingin atau lemari es. Mesin Carnot hanya merupakan siklus teoritik saja, dalam praktek biasanya digunakan siklus Otto untuk motor bakar (terdiri dari 2 proses adiabatik dan 2 proses isokhorik) dan siklus diesel untuk mesin diesel (terdiri dari 2 proses adiabatik, 1 proses isobarik dan 1 proses isokhorik).
1. Gas mudah berubah bentuk dan volumenya.
2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.
SIFAT GAS IDEAL
1. Gas terdiri atas partikel-partikel dalam jumlah yang besar sekali, yang senantiasa bergerak dengan arah sembarang dan tersebar merata dalam ruang yang kecil.
2. Jarak antara partikel gas jauh lebih besar daripada ukuran partikel, sehingga ukuran partikel gas dapat diabaikan.
3. Tumbukan antara partikel-partikel gas dan antara partikel dengan dinding tempatnya adalah elastis sempurna.
4. Hukum-hukum Newton tentang gerak berlaku.
PERSAMAAN GAS IDEAL DAN TEKANAN (P) GAS IDEAL
P V = n R T = N K T
n = N/No
T = suhu (ºK)
R = K . No = 8,31 )/mol. ºK
N = jumlah pertikel
P = (2N / 3V) . Ek ® T = 2Ek/3K
V = volume (m3)
n = jumlah molekul gas
K = konstanta Boltzman = 1,38 x 10-23 J/ºK
No = bilangan Avogadro = 6,023 x 1023/mol
ENERGI TOTAL (U) DAN KECEPATAN (v) GAS IDEAL
Ek = 3KT/2
U = N Ek = 3NKT/2
v = Ö(3 K T/m) = Ö(3P/r)
dengan:
Ek = energi kinetik rata-rata tiap partikel gas ideal
U = energi dalam gas ideal = energi total gas ideal
v = kecepatan rata-rata partikel gas ideal
m = massa satu mol gas
p = massa jenis gas ideal
Jadi dari persamaan gas ideal dapat diambil kesimpulan:
1. Makin tinggi temperatur gas ideal makin besar pula kecepatan partikelnya.
2. Tekanan merupakan ukuran energi kinetik persatuan volume yang dimiliki gas.
3. Temperatur merupakan ukuran rata-rata dari energi kinetik tiap partikel gas.
4. Persamaan gas ideal (P V = nRT) berdimensi energi/usaha .
5. Energi dalam gas ideal merupakan jumlah energi kinetik seluruh partikelnya.
Dari persarnaan gas ideal PV = nRT, dapat di jabarkan:
Pada (n, T) tetap, (isotermik)
berlaku Hukum Boyle: PV = C
Pada (n, V) tetap, (isokhorik)
berlaku Hukum Gay-Lussac: P/T=C
Pada (n,P) tetap, (isobarik)
berlaku Hukum Gay-Lussac:
V/T= C
Padan tetap, berlaku Hukum
Boyle-Gay-Lussac: PV/T=C
C = konstan
Jadi:
(P1.V1)/T1 = (P2.V2)/T2=...dst.
Hukum I Termodinamika
1. Hukum ini diterapkan pada gas, khususnya gas ideal
PV = n R T
P . DV + -V . DP = n R DT
2. Energi adalah kekal, jika diperhitungkan semua bentuk energi yang timbul.
3. Usaha tidak diperoleh jika tidak diberi energi dari luar.
4. Dalam suatu sistem berlaku persamaan termodinamika I:
DQ = DU+ DW
DQ = kalor yang diserap
DU = perubanan energi dalam
DW = usaha (kerja) luar yang dilakukan
DARI PERSAMAAN TERMODINAMIKA I DAPAT DIJABARKAN:
1. Pada proses isobarik (tekanan tetap) ® DP = 0; sehingga,
DW = P . DV = P (V2 - V1) ® P. DV = n .R DT
DQ = n . Cp . DT ® maka Cp = 5/2 R (kalor jenis pada tekanan tetap)
DU-= 3/2 n . R . DT
2. Pada proses isokhorik (Volume tetap) ® DV =O; sehingga,
DW = 0 ® DQ = DU
DQ = n . Cv . DT ® maka Cv = 3/2 R (kalor jenis pada volume tetap)
AU = 3/2 n . R . DT
3. Pada proses isotermik (temperatur tetap): ® DT = 0 ;sehingga,
DU = 0 ® DQ = DW = nRT ln (V2/V1)
4. Pada proses adiabatik (tidak ada pertukaran kalor antara sistem dengan sekelilingnya) ® DQ = 0 Berlaku hubungan::
PVg = konstan ® g = Cp/Cv ,disebut konstanta Laplace
5. Cara lain untuk menghitung usaha adalah menghitung luas daerah di bawah garis proses.
Catatan:
1. Jika sistem menerima panas, maka sistem akan melakukan kerja dan energi akan naik. Sehingga DQ, DW ® (+).
2. Jika sistem menerima kerja, maka sistem akan mengeluarkan panas dan energi dalam akan turun. Sehingga DQ, DW ® (-).
3. Untuk gas monoatomik (He, Ne, dll), energi dalam (U) gas adalah
U = Ek = 3/2 nRT ® g = 1,67
4. Untuk gas diatomik (H2, N2, dll), energi dalam (U) gas adalah
Suhu rendah
(T £ 100ºK)
U = Ek = 3/2 nRT ® g = 1,67
® Cp-CV=R
Suhu sedang
U = Ek =5/2 nRT ® g = 1,67
Suhu tinggi
(T > 5000ºK)
Tidak mungkin membuat suatu mesin yang bekerja secara terus-menerus serta rnengubah semua kalor yang diserap menjadi usaha mekanis.
T1 > T2, maka usaha mekanis:
W = Q1 - Q2
h = W/Q1 = 1 - Q2/Q1 = 1 - T2/T1
T1 = reservoir suhu tinggi
T2 = reservoir suhu rendah
Q1 = kalor yang masuk
Q2 =kalor yang dilepas
W = usaha yang dilakukan
h = efesiensi mesin
Untuk mesin pendingin:
h = W/Q2 = Q1/Q2 -1 = T1/T2 - 1
Koefisien Kinerja = 1/h
Dalil :
Dari semua motor yang bekerja dengan menyerap kalor dari reservoir T1 dan melepaskan kalor pada reservoir T2 tidak ada yang lebih efisien dari motor Carnot.
BC ; DA = adiabatik
AB ; CD = isotermik
Mesin Carnot terdiri atas 4 proses, yaitu 2 proses adiabatik dan 2 proses isotermik. Kebalikan dari mesin Carnot merupakan mesin pendingin atau lemari es. Mesin Carnot hanya merupakan siklus teoritik saja, dalam praktek biasanya digunakan siklus Otto untuk motor bakar (terdiri dari 2 proses adiabatik dan 2 proses isokhorik) dan siklus diesel untuk mesin diesel (terdiri dari 2 proses adiabatik, 1 proses isobarik dan 1 proses isokhorik).
TERMODINAMIKA
Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.
Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.
Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.
Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.
Konsep dasar dalam termodinamika
Pengabstrakan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter.
Sistem termodinamika
Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.
Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:
* sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
* sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:
o pembatas adiabatik: tidak memperbolehkan pertukaran panas.
o pembatas rigid: tidak memperbolehkan pertukaran kerja.
* sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.
Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.
Keadaan termodinamika
Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).
Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.
Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.
Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.
Hukum-hukum Dasar Termodinamika
Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:
* Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
* Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
* Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
* Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.
Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.
Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.
Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.
Konsep dasar dalam termodinamika
Pengabstrakan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter.
Sistem termodinamika
Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.
Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:
* sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
* sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:
o pembatas adiabatik: tidak memperbolehkan pertukaran panas.
o pembatas rigid: tidak memperbolehkan pertukaran kerja.
* sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.
Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.
Keadaan termodinamika
Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).
Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.
Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.
Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.
Hukum-hukum Dasar Termodinamika
Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:
* Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
* Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
* Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
* Hukum ketiga Termodinamika
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.
Jumat, 04 Juni 2010
TEORI KINETIK GAS
Di pertengahan abad ke-19, ilmuwan mengembangkan suatu teori baru untuk menggantikan teori kalorik. Teori ini bedasarkan pada anggapan bahwa zat disusun oleh partikel-partikel sangat kecil yang selalu bergerak. Bunyi teori Kinetik adalah sebagai berikut:
Dalam benda yang panas, partikel-partikel bergerak lebih cepat dan karena itu memiliki energi yang lebih besar daripada partikel-partikel dalam benda yang lebih dingin.
Teori Kinetik (atau teori kinetik pada gas) berupaya menjelaskan sifat-sifat makroscopik gas, seperti tekanan, suhu, atau volume, dengan memperhatikan komposisi molekular mereka dan gerakannya. Intinya, teori ini menytakan bahwa tekanan tidaklah disebabkan oleh denyut-denyut statis di antara molekul-molekul, seperti yang diduga Isaac Newton, melainkan disebabkan oleh tumbukan antarmolekul yang bergerak pada kecepatan yang berbeda-beda. Teori Kinetik dikenal pula sebagai Teori Kinetik-Molekular atau Teori Tumbukan atau Teori Kinetik pada Gas.
Teori untuk gas ideal memiliki asumsi-asumsi berikut ini:
* Gas terdiri dari partikel-partikel sangat kecil, dengan [[massa] tidak nol.
* Banyaknya molekul sangatlah banyak, sehingga perlakuan statistika dapat diterapkan.
* Molekul-molekul ini bergerak secara konstan sekaligus acak. Partikel-partike yang bergerak sangat cepat itu secara konstan bertumbukan dengan dinding-dinding wadah.
* Tumbukan-tumbukan partikel gas terhadap dinding wadah bersifat lenting (elastis) sempurna.
* Interaksi antarmolekul dapat diabaikan (negligible). Mereka tidak mengeluarkan gaya satu sama lain, kecuali saat tumbukan terjadi.
* Keseluruhan volume molekul-molekul gas individual dapat diabaikan bila dibandingkan dengan volume wadah. Ini setara dengan menyatakan bahwa jarak rata-rata antarpartikel gas cukuplah besar bila dibandingkan dengan ukuran mereka.
* Molekul-molekul berbentuk bulat (bola) sempurna, dan bersifat lentur (elastic).
* Energi kinetik rata-rata partikel-partikel gas hanya bergantung kepada suhu sistem.
* Efek-efek relativistik dapat diabaikan.
* Efek-efek Mekanika kuantum dapat diabaikan. Artinya bahwa jarak antarpartikel lebih besar daripada panjang gelombang panas de Broglie dan molekul-molekul dapat diperlakukan sebagai objek klasik.
* Waktu selama terjadinya tumbukan molekul dengan dinding wadah dapat diabaikan karena berbanding lurus terhadap waktu selang antartumbukan.
* Persamaan-persamaan gerak molekul berbanding terbalik terhadap waktu.
Lebih banyak pengembangan menenangkan asumsi-asumsi ini dan didasarkan kepada Persamaan Boltzmann. Ini dapat secara akurat menjelaskan sifat-sifat gas padat, sebab mereka menyertakan volume molekul. Asumsi-asumsi penting adalah ketiadaan efek-efek quantum, kekacauan molekular dan gradien kecil di dalam sifat-sifat banyaknya. Perluasan terhadap orde yang lebih tinggi dalam kepadatan dikenal sebagai perluasan virial. Karya definitif adalah buku tulisan Chapman dan Enskog, tetepi terdapat pengembangan yang lebih modern dan terdapat pendekatan alternatif yang dikembangkan oleh Grad, didasarkan pada perluasan momentum.Di dalam batasan lainnya, untuk gas yang diperjarang, gradien-gradien di dalam sifat-sifat besarnya tidaklah kecil bila dibandingkan dengan lintasan-lintasan bebas rata-ratanya. Ini dikenal sebagai rezim Knudsen regime dan perluasan-perluasannya dapat dinyatakan dengan Bilangan Knudsen.
Teori Kinetik juga telah diperluas untuk memasukkan tumbukan tidak lenting di dalam materi butiran oleh Jenkins dan kawan-kawan.
Faktor :
Tekanan
Tekanan dijelaskan oleh teori kinetik sebagai kemunculan dari gaya yang dihasilkan oleh molekul-molekul gas yang menabrak dinding wadah. Misalkan suatu gas denagn N molekul, masing-masing bermassa m, terisolasi di dalam wadah yang mirip kubus bervolume V. Ketika sebuah molekul gas menumbuk dinding wadah yang tegak lurus terhadap sumbu koordinat x dan memantul dengan arah berlawanan pada laju yang sama (suatu tumbukan lenting), maka momentum yang dilepaskan oleh partikel dan diraih oleh dinding adalah:
di mana vx adalah komponen-x dari kecepatan awal partikel.
Partikel memberi tumbukan kepada dinding sekali setiap 2l/vx satuan waktu (di mana l adalah panjang wadah). Kendati partikel menumbuk sebuah dinding sekali setiap 1l/vx satuan waktu, hanya perubahan momentum pada dinding yang dianggap, sehingga partikel menghasilkan perubahan momentum pada dinding tertentu sekali setiap 2l/vx satuan waktu.
gaya yang dimunculkan partikel ini adalah:
Keseluruhan gaya yang menumbuk dinding adalah:
di mana hasil jumlahnya adalah semua molekul gas di dalam wadah.
Besaran kecepatan untuk tiap-tiap partikel mengikuti persamaan ini:
Kini perhatikan gaya keseluruhan yang menumbuk keenam-enam dinding, dengan menambahkan sumbangan dari tiap-tiap arah, kita punya:
di mana faktor dua muncul sejak saat ini, dengan memperhatikan kedua-dua dinding menurut arah yang diberikan.
Misalkan ada sejumlah besar partikel yang bergerak cukup acak, gaay pada tiap-tiap dinding akan hampir sama dan kini perhatikanlah gaya pada satu dinding saja, kita punya:
Kuantitas
dapat dituliskan sebagai di mana garis atas menunjukkan rata-rata, pada kasus ini rata-rata semua partikel. Kuantitas ini juga dinyatakan dengan di mana vrms dalah akar kuadrat rata-rata kecepatan semua partikel.
Jadi, gaya dapat dituliskan sebagai:
Tekanan, yakni gaya per satuan luas, dari gas dapat dituliskan sebagai:
di mana A adalah luas dinding sasaran gaya.
Jadi, karena luas bagian yang berseberangan dikali dengan panjang sama dengan volume, kita punya pernyataan berikut untuk tekanan
di mana V adalah volume. Maka kita punya
Karena Nm adalah masa keseluruhan gas, maka kepadatan adalah massa dibagi oleh volume
Maka tekanan adalah
Hasil ini menarik dan penting, sebab ia menghubungkan tekanan, sifat makroskopik, terhadap energi kinetik translasional rata-rata per molekul yakni suatu sifat mikroskopik. Ketahuilah bahwa hasil kali tekanan dan volume adalah sepertiga dari keseluruhan energi kinetik.
Suhu dan energi kinetik
Dari hukum gas ideal
PV = NkBT(1)
dimana B adalah konstanta Boltzmann dan T adalah suhu absolut. Dan dari rumus diatas, dihasilkan Gagal memparse (kesalahan sintaks): PV={Nmv_{rms}^2\overset 3}
Derivat:
yang menuju ke fungsi energi kinetik dari sebuah molekul
Energi kinetik dari sistem adalah N kali lipat dari molekul
Suhunya menjadi
Persamaan 3 ini adalah salah satu hasil penting dari teori kinetik
“ Rerata energi kinetik molekuler adalah sebanding dengan suhu absolut. ”
Dari persamaan 1 dan 3 didapat:
Dengan demikian, hasil dari tekanan dan volume tiap mol sebanding dengan rerata energi kinetik molekuler. Persamaan 1 dan 4 disebut dengan hasil klasik, yang juga dapat diturunkan dari mekanika statistik[1].
Karena 3N adalah derajat kebebasan (DK) dalam sebuah sistem gas monoatomik dengan N partikel, energi kinetik tiap DK adalah:
Dalam energi kinetik tiap DK, konstanta kesetaraan suhu adalah setengah dari konstanta Boltzmann. Hasil ini berhubungan dengan teorema ekuipartisi. Seperti yang dijelaskan pada artikel kapasitas bahang, gas diatomik seharusnya mempunyai 7 derajat kebebasan, tetapi gas yang lebih ringan berlaku sebagai gas yang hanya mempunyai 5. Dengan demikian, energi kinetik tiap kelvin (gas ideal monoatomik) adalah:
* Tiap mole: 12.47 J
* Tiap molekul: 20.7 yJ = 129 μeV
Pada STP (273,15 K , 1 atm), didapat:
* Tiap mole: 3406 J
* Tiap molekul: 5.65 zJ = 35.2 meV
Banyaknya tumbukan dengan dinding
Jumlah tumbukan atom dengan dinding wadah tiap satuan luar tiap satuan waktu dapat diketahui. Asumsikan pada gas ideal, derivasi dari menghasilkan persamaan untuk jumlah seluruh tumbukan tiap satuan waktu tiap satuan luas:
Laju RMS molekul
Dari persamaan energi kinetik dapat ditunjukkan bahwa:
dengan v pada m/s, T pada kelvin, dan R adalah konstanta gas. Massa molar diberikan sebagai kg/mol. Kelajuan paling mungkin adalah 81.6% dari kelajuan RMS, dan rerata kelajuannya 92.1% (distribusi kelajuan Maxwell-Boltzmann).
Banyaknya tumbukan dengan dinding
One can calculate the number of atomic or molecular collisions with a wall of a container per unit area per unit time.
Assuming an ideal gas, a derivation results in an equation for total number of collisions per unit time per area:
Laju RMS molekul
From the kinetic energy formula it can be shown that
with v in m/s, T in kelvins, and R is the gas constant. The molar mass is given as kg/mol. The most probable speed is 81.6% of the rms speed, and the mean speeds 92.1% (distribution of speeds). hk
Dalam benda yang panas, partikel-partikel bergerak lebih cepat dan karena itu memiliki energi yang lebih besar daripada partikel-partikel dalam benda yang lebih dingin.
Teori Kinetik (atau teori kinetik pada gas) berupaya menjelaskan sifat-sifat makroscopik gas, seperti tekanan, suhu, atau volume, dengan memperhatikan komposisi molekular mereka dan gerakannya. Intinya, teori ini menytakan bahwa tekanan tidaklah disebabkan oleh denyut-denyut statis di antara molekul-molekul, seperti yang diduga Isaac Newton, melainkan disebabkan oleh tumbukan antarmolekul yang bergerak pada kecepatan yang berbeda-beda. Teori Kinetik dikenal pula sebagai Teori Kinetik-Molekular atau Teori Tumbukan atau Teori Kinetik pada Gas.
Teori untuk gas ideal memiliki asumsi-asumsi berikut ini:
* Gas terdiri dari partikel-partikel sangat kecil, dengan [[massa] tidak nol.
* Banyaknya molekul sangatlah banyak, sehingga perlakuan statistika dapat diterapkan.
* Molekul-molekul ini bergerak secara konstan sekaligus acak. Partikel-partike yang bergerak sangat cepat itu secara konstan bertumbukan dengan dinding-dinding wadah.
* Tumbukan-tumbukan partikel gas terhadap dinding wadah bersifat lenting (elastis) sempurna.
* Interaksi antarmolekul dapat diabaikan (negligible). Mereka tidak mengeluarkan gaya satu sama lain, kecuali saat tumbukan terjadi.
* Keseluruhan volume molekul-molekul gas individual dapat diabaikan bila dibandingkan dengan volume wadah. Ini setara dengan menyatakan bahwa jarak rata-rata antarpartikel gas cukuplah besar bila dibandingkan dengan ukuran mereka.
* Molekul-molekul berbentuk bulat (bola) sempurna, dan bersifat lentur (elastic).
* Energi kinetik rata-rata partikel-partikel gas hanya bergantung kepada suhu sistem.
* Efek-efek relativistik dapat diabaikan.
* Efek-efek Mekanika kuantum dapat diabaikan. Artinya bahwa jarak antarpartikel lebih besar daripada panjang gelombang panas de Broglie dan molekul-molekul dapat diperlakukan sebagai objek klasik.
* Waktu selama terjadinya tumbukan molekul dengan dinding wadah dapat diabaikan karena berbanding lurus terhadap waktu selang antartumbukan.
* Persamaan-persamaan gerak molekul berbanding terbalik terhadap waktu.
Lebih banyak pengembangan menenangkan asumsi-asumsi ini dan didasarkan kepada Persamaan Boltzmann. Ini dapat secara akurat menjelaskan sifat-sifat gas padat, sebab mereka menyertakan volume molekul. Asumsi-asumsi penting adalah ketiadaan efek-efek quantum, kekacauan molekular dan gradien kecil di dalam sifat-sifat banyaknya. Perluasan terhadap orde yang lebih tinggi dalam kepadatan dikenal sebagai perluasan virial. Karya definitif adalah buku tulisan Chapman dan Enskog, tetepi terdapat pengembangan yang lebih modern dan terdapat pendekatan alternatif yang dikembangkan oleh Grad, didasarkan pada perluasan momentum.Di dalam batasan lainnya, untuk gas yang diperjarang, gradien-gradien di dalam sifat-sifat besarnya tidaklah kecil bila dibandingkan dengan lintasan-lintasan bebas rata-ratanya. Ini dikenal sebagai rezim Knudsen regime dan perluasan-perluasannya dapat dinyatakan dengan Bilangan Knudsen.
Teori Kinetik juga telah diperluas untuk memasukkan tumbukan tidak lenting di dalam materi butiran oleh Jenkins dan kawan-kawan.
Faktor :
Tekanan
Tekanan dijelaskan oleh teori kinetik sebagai kemunculan dari gaya yang dihasilkan oleh molekul-molekul gas yang menabrak dinding wadah. Misalkan suatu gas denagn N molekul, masing-masing bermassa m, terisolasi di dalam wadah yang mirip kubus bervolume V. Ketika sebuah molekul gas menumbuk dinding wadah yang tegak lurus terhadap sumbu koordinat x dan memantul dengan arah berlawanan pada laju yang sama (suatu tumbukan lenting), maka momentum yang dilepaskan oleh partikel dan diraih oleh dinding adalah:
di mana vx adalah komponen-x dari kecepatan awal partikel.
Partikel memberi tumbukan kepada dinding sekali setiap 2l/vx satuan waktu (di mana l adalah panjang wadah). Kendati partikel menumbuk sebuah dinding sekali setiap 1l/vx satuan waktu, hanya perubahan momentum pada dinding yang dianggap, sehingga partikel menghasilkan perubahan momentum pada dinding tertentu sekali setiap 2l/vx satuan waktu.
gaya yang dimunculkan partikel ini adalah:
Keseluruhan gaya yang menumbuk dinding adalah:
di mana hasil jumlahnya adalah semua molekul gas di dalam wadah.
Besaran kecepatan untuk tiap-tiap partikel mengikuti persamaan ini:
Kini perhatikan gaya keseluruhan yang menumbuk keenam-enam dinding, dengan menambahkan sumbangan dari tiap-tiap arah, kita punya:
di mana faktor dua muncul sejak saat ini, dengan memperhatikan kedua-dua dinding menurut arah yang diberikan.
Misalkan ada sejumlah besar partikel yang bergerak cukup acak, gaay pada tiap-tiap dinding akan hampir sama dan kini perhatikanlah gaya pada satu dinding saja, kita punya:
Kuantitas
dapat dituliskan sebagai di mana garis atas menunjukkan rata-rata, pada kasus ini rata-rata semua partikel. Kuantitas ini juga dinyatakan dengan di mana vrms dalah akar kuadrat rata-rata kecepatan semua partikel.
Jadi, gaya dapat dituliskan sebagai:
Tekanan, yakni gaya per satuan luas, dari gas dapat dituliskan sebagai:
di mana A adalah luas dinding sasaran gaya.
Jadi, karena luas bagian yang berseberangan dikali dengan panjang sama dengan volume, kita punya pernyataan berikut untuk tekanan
di mana V adalah volume. Maka kita punya
Karena Nm adalah masa keseluruhan gas, maka kepadatan adalah massa dibagi oleh volume
Maka tekanan adalah
Hasil ini menarik dan penting, sebab ia menghubungkan tekanan, sifat makroskopik, terhadap energi kinetik translasional rata-rata per molekul yakni suatu sifat mikroskopik. Ketahuilah bahwa hasil kali tekanan dan volume adalah sepertiga dari keseluruhan energi kinetik.
Suhu dan energi kinetik
Dari hukum gas ideal
PV = NkBT(1)
dimana B adalah konstanta Boltzmann dan T adalah suhu absolut. Dan dari rumus diatas, dihasilkan Gagal memparse (kesalahan sintaks): PV={Nmv_{rms}^2\overset 3}
Derivat:
yang menuju ke fungsi energi kinetik dari sebuah molekul
Energi kinetik dari sistem adalah N kali lipat dari molekul
Suhunya menjadi
Persamaan 3 ini adalah salah satu hasil penting dari teori kinetik
“ Rerata energi kinetik molekuler adalah sebanding dengan suhu absolut. ”
Dari persamaan 1 dan 3 didapat:
Dengan demikian, hasil dari tekanan dan volume tiap mol sebanding dengan rerata energi kinetik molekuler. Persamaan 1 dan 4 disebut dengan hasil klasik, yang juga dapat diturunkan dari mekanika statistik[1].
Karena 3N adalah derajat kebebasan (DK) dalam sebuah sistem gas monoatomik dengan N partikel, energi kinetik tiap DK adalah:
Dalam energi kinetik tiap DK, konstanta kesetaraan suhu adalah setengah dari konstanta Boltzmann. Hasil ini berhubungan dengan teorema ekuipartisi. Seperti yang dijelaskan pada artikel kapasitas bahang, gas diatomik seharusnya mempunyai 7 derajat kebebasan, tetapi gas yang lebih ringan berlaku sebagai gas yang hanya mempunyai 5. Dengan demikian, energi kinetik tiap kelvin (gas ideal monoatomik) adalah:
* Tiap mole: 12.47 J
* Tiap molekul: 20.7 yJ = 129 μeV
Pada STP (273,15 K , 1 atm), didapat:
* Tiap mole: 3406 J
* Tiap molekul: 5.65 zJ = 35.2 meV
Banyaknya tumbukan dengan dinding
Jumlah tumbukan atom dengan dinding wadah tiap satuan luar tiap satuan waktu dapat diketahui. Asumsikan pada gas ideal, derivasi dari menghasilkan persamaan untuk jumlah seluruh tumbukan tiap satuan waktu tiap satuan luas:
Laju RMS molekul
Dari persamaan energi kinetik dapat ditunjukkan bahwa:
dengan v pada m/s, T pada kelvin, dan R adalah konstanta gas. Massa molar diberikan sebagai kg/mol. Kelajuan paling mungkin adalah 81.6% dari kelajuan RMS, dan rerata kelajuannya 92.1% (distribusi kelajuan Maxwell-Boltzmann).
Banyaknya tumbukan dengan dinding
One can calculate the number of atomic or molecular collisions with a wall of a container per unit area per unit time.
Assuming an ideal gas, a derivation results in an equation for total number of collisions per unit time per area:
Laju RMS molekul
From the kinetic energy formula it can be shown that
with v in m/s, T in kelvins, and R is the gas constant. The molar mass is given as kg/mol. The most probable speed is 81.6% of the rms speed, and the mean speeds 92.1% (distribution of speeds). hk
Kamis, 18 Maret 2010
BENDA TEGAR
Sebuah benda dikatakan melakukan gerakan rotasi jika semua titik pada benda bergerak mengitari sumbu alias poros benda tersebut. Lebih mudahnya bayangkanlah gerakan kipas angin atau gerakan Compact Disc dalam CD/DVD room.
Yang dimaksudkan dengan benda tegar adalah benda yang bentuknya selalu tetap alias tidak berubah, di mana posisi setiap partikel pada benda tersebut relative selalu sama antara satu dengan yang lain. Sebenarnya benda dalam kehidupan sehari-hari jauh lebih rumit. Bentuk benda dapat berubah ketika dikenai gaya. Perlu diingat bahwa Benda tegar merupakan sebuah pendekatan ideal saja, di mana kita menganggap bentuk dan ukuran benda tidak berubah.
Dalam pokok bahasan ini, kita akan meninjau gerakan rotasi benda tegar tanpa mempersoalkan gaya yang mempengaruhi gerakan benda tegar tersebut. Jadi analisis kita murni hanya mencakup gerakan rotasi dari benda tegar itu. Analisis mengenai rotasi benda tegar dan gaya yang mempengaruhinya akan dipelajari pada Dinamika Rotasi.
Ada beberapa pokok bahasan yang akan kita pelajari dalam topic ini, yakni : Besaran-besaran sudut, Gerak rotasi dengan percepatan sudut tetap dan gerak menggelinding.
Setelah kita memahami konsep-konsep dasar dari gerak rotasi benda tegar ini, baru kita pelajari dinamika rotasi, termasuk momentum sudut dkk
KESETIMBANGAN BENDA TEGAR
Sejauh ini kita sudah mempelajari dan menganalisis benda-benda yang bergerak. Setiap benda yang bergerak tentu saja punya kecepatan. Jika benda melakukan gerak lurus, benda itu punya kecepatan linear atau biasa disingkat kecepatan. Sedangkan benda yang melakukan gerak rotasi punya kecepatan sudut. Btw, benda yang diam tidak mungkin tiba-tiba saja bergerak, pasti ada penyebab yang membuat benda itu bergerak. Demikian juga benda yang sedang bergerak tidak mungkin tiba-tiba berhenti tanpa penyebab. Dalam fisika, penyebab gerakan benda itu dikenal dengan julukan gaya. Sebuah benda bisa bergerak lurus jika gaya yang dikerjakan pada benda itu lebih besar daripada gaya hambat (gaya gesekan). Selisih antara gaya yang dikerjakan pada benda dengan gaya gesekan disebut gaya total. Jadi yang membuat benda bisa bergerak lurus adalah gaya total. Mengenai hal ini sudah kita pelajari dalam hukum II Newton (Dinamika).
Selain melakukan gerak lurus, benda juga bisa melakukan gerak rotasi. Benda yang melakukan gerak rotasi disebabkan oleh adanya Torsi. Jika torsi yang dikerjakan pada benda yang diam lebih besar dari torsi yang menghambat, maka benda akan berputar alias berotasi. Dalam hal ini selisih antara torsi yang dikerjakan pada benda dengan torsi yang menghambat disebut torsi total. Jadi sebenarnya yang membuat benda berotasi adalah torsi total. Torsi = gaya x lengan gaya. Ketika kita memberikan torsi pada sebuah benda, sebenarnya kita memberikan gaya pada benda itu, tapi gaya itu dikalikan juga dengan panjang lengan gaya.
Torsi yang menghambat disebabkan oleh adanya gaya gesekan. Lebih tepatnya torsi yang menghambat = hasil kali gaya gesekan denga panjang lengan gaya.
Dalam kehidupan sehari-hari, tidak semua benda yang dijumpai selalu bergerak. Sebelum bergerak, benda pasti diam, demikian juga setelah bergerak, mungkin benda akan berhenti. Di samping itu, ada juga benda yang selalu diam atau dirancang untuk tetap diam. Kalau bergerak malah bisa menyebabkan malapetaka. Salah satu contoh sederhana adalah jembatan dkk. Jembatan yang tidak dirancang dengan baik akan ikut2an bergerak alias roboh jika tidak mampu menahan beban kendaraan yang lewat di atas jembatan tersebut. Dirimu dan diriku akan ikut2an terjun bebas kalau lewat di jembatan seperti itu… Gedung yang tidak dirancang dengan baik juga akan langsung roboh jika diguncang gempa bumi berskala kecil atau besar.
Konsep keseimbangan benda tegar merupakan pengetahuan dasar yang sangat penting dan mempunyai banyak penerapan dalam kehidupan sehari-hari, khususnya bidang teknik. Kalau pingin kuliah bagian teknik arsitek, teknik mesin atau teknik sipil kayanya dirimu perlu belajar pokok bahasan ini dengan sungguh-sungguh…
Dalam pembahasan ini, kita tetap menganggap benda sebagai benda tegar. Benda tegar tuh cuma bentuk ideal yang kita pakai untuk menggambarkan suatu benda. Suatu benda disebut sebagai benda tegar jika jarak antara setiap bagian benda itu selalu sama. Dalam hal ini, setiap benda bisa kita anggap tersusun dari partikel-partikel atau titik-titik, di mana jarak antara setiap titik yang tersebar di seluruh bagian benda selalu sama. Oya, lupa… benda tegar = benda kaku.
Dalam kenyataannya, setiap benda bisa berubah bentuk (menjadi tidak tegar), jika pada benda itu dikenai gaya atau torsi. Misalnya beton yang digunakan untuk membangun jembatan bisa bengkok, bahkan patah jika dikenai gaya berat yang besar (ada kendaraan raksasa yang lewat di atasnya) Derek bisa patah jika beban yang diangkat melebihi kapasitasnya. Mobil bisa bungkuk kalau gaya berat penumpang melebihi kapasitasnya. Dalam hal ini benda-benda itu mengalami perubahan bentuk. Jika bentuk benda berubah, maka jarak antara setiap bagian pada benda itu tentu saja berubah alias benda menjadi tidak tegar lagi. Untuk menghindari hal ini, maka kita perlu mempelajari faktor-faktor apa saja yang dibutuhkan agar sebuah benda tetap tegar.
Dalam merancang sesuatu, para ahli teknik biasanya memperhitungkan hal ini secara saksama. Para ahli perteknikan biasanya menganggap bentuk benda tetap tegar jika benda itu dikenai gaya atau torsi. Mereka juga memperhitungkan faktor elastisitas bahan (Ingat hukum hooke dan elastisitas) dan memperkirakan secara saksama gaya dan torsi maksimum agar benda tetap tegar. Demikian juga para ahli teknik pertubuhan (dokter). Pengetahuan dan pemahaman yang baik dan benar mengenai gaya pada otot dan sendi sangat membantu pasiennya untuk merayakan ulang tahun lagi, mempunyai gigi yang rapi walaupun harus dipagari dengan kawat dulu dkk…..
Yang dimaksudkan dengan benda tegar adalah benda yang bentuknya selalu tetap alias tidak berubah, di mana posisi setiap partikel pada benda tersebut relative selalu sama antara satu dengan yang lain. Sebenarnya benda dalam kehidupan sehari-hari jauh lebih rumit. Bentuk benda dapat berubah ketika dikenai gaya. Perlu diingat bahwa Benda tegar merupakan sebuah pendekatan ideal saja, di mana kita menganggap bentuk dan ukuran benda tidak berubah.
Dalam pokok bahasan ini, kita akan meninjau gerakan rotasi benda tegar tanpa mempersoalkan gaya yang mempengaruhi gerakan benda tegar tersebut. Jadi analisis kita murni hanya mencakup gerakan rotasi dari benda tegar itu. Analisis mengenai rotasi benda tegar dan gaya yang mempengaruhinya akan dipelajari pada Dinamika Rotasi.
Ada beberapa pokok bahasan yang akan kita pelajari dalam topic ini, yakni : Besaran-besaran sudut, Gerak rotasi dengan percepatan sudut tetap dan gerak menggelinding.
Setelah kita memahami konsep-konsep dasar dari gerak rotasi benda tegar ini, baru kita pelajari dinamika rotasi, termasuk momentum sudut dkk
KESETIMBANGAN BENDA TEGAR
Sejauh ini kita sudah mempelajari dan menganalisis benda-benda yang bergerak. Setiap benda yang bergerak tentu saja punya kecepatan. Jika benda melakukan gerak lurus, benda itu punya kecepatan linear atau biasa disingkat kecepatan. Sedangkan benda yang melakukan gerak rotasi punya kecepatan sudut. Btw, benda yang diam tidak mungkin tiba-tiba saja bergerak, pasti ada penyebab yang membuat benda itu bergerak. Demikian juga benda yang sedang bergerak tidak mungkin tiba-tiba berhenti tanpa penyebab. Dalam fisika, penyebab gerakan benda itu dikenal dengan julukan gaya. Sebuah benda bisa bergerak lurus jika gaya yang dikerjakan pada benda itu lebih besar daripada gaya hambat (gaya gesekan). Selisih antara gaya yang dikerjakan pada benda dengan gaya gesekan disebut gaya total. Jadi yang membuat benda bisa bergerak lurus adalah gaya total. Mengenai hal ini sudah kita pelajari dalam hukum II Newton (Dinamika).
Selain melakukan gerak lurus, benda juga bisa melakukan gerak rotasi. Benda yang melakukan gerak rotasi disebabkan oleh adanya Torsi. Jika torsi yang dikerjakan pada benda yang diam lebih besar dari torsi yang menghambat, maka benda akan berputar alias berotasi. Dalam hal ini selisih antara torsi yang dikerjakan pada benda dengan torsi yang menghambat disebut torsi total. Jadi sebenarnya yang membuat benda berotasi adalah torsi total. Torsi = gaya x lengan gaya. Ketika kita memberikan torsi pada sebuah benda, sebenarnya kita memberikan gaya pada benda itu, tapi gaya itu dikalikan juga dengan panjang lengan gaya.
Torsi yang menghambat disebabkan oleh adanya gaya gesekan. Lebih tepatnya torsi yang menghambat = hasil kali gaya gesekan denga panjang lengan gaya.
Dalam kehidupan sehari-hari, tidak semua benda yang dijumpai selalu bergerak. Sebelum bergerak, benda pasti diam, demikian juga setelah bergerak, mungkin benda akan berhenti. Di samping itu, ada juga benda yang selalu diam atau dirancang untuk tetap diam. Kalau bergerak malah bisa menyebabkan malapetaka. Salah satu contoh sederhana adalah jembatan dkk. Jembatan yang tidak dirancang dengan baik akan ikut2an bergerak alias roboh jika tidak mampu menahan beban kendaraan yang lewat di atas jembatan tersebut. Dirimu dan diriku akan ikut2an terjun bebas kalau lewat di jembatan seperti itu… Gedung yang tidak dirancang dengan baik juga akan langsung roboh jika diguncang gempa bumi berskala kecil atau besar.
Konsep keseimbangan benda tegar merupakan pengetahuan dasar yang sangat penting dan mempunyai banyak penerapan dalam kehidupan sehari-hari, khususnya bidang teknik. Kalau pingin kuliah bagian teknik arsitek, teknik mesin atau teknik sipil kayanya dirimu perlu belajar pokok bahasan ini dengan sungguh-sungguh…
Dalam pembahasan ini, kita tetap menganggap benda sebagai benda tegar. Benda tegar tuh cuma bentuk ideal yang kita pakai untuk menggambarkan suatu benda. Suatu benda disebut sebagai benda tegar jika jarak antara setiap bagian benda itu selalu sama. Dalam hal ini, setiap benda bisa kita anggap tersusun dari partikel-partikel atau titik-titik, di mana jarak antara setiap titik yang tersebar di seluruh bagian benda selalu sama. Oya, lupa… benda tegar = benda kaku.
Dalam kenyataannya, setiap benda bisa berubah bentuk (menjadi tidak tegar), jika pada benda itu dikenai gaya atau torsi. Misalnya beton yang digunakan untuk membangun jembatan bisa bengkok, bahkan patah jika dikenai gaya berat yang besar (ada kendaraan raksasa yang lewat di atasnya) Derek bisa patah jika beban yang diangkat melebihi kapasitasnya. Mobil bisa bungkuk kalau gaya berat penumpang melebihi kapasitasnya. Dalam hal ini benda-benda itu mengalami perubahan bentuk. Jika bentuk benda berubah, maka jarak antara setiap bagian pada benda itu tentu saja berubah alias benda menjadi tidak tegar lagi. Untuk menghindari hal ini, maka kita perlu mempelajari faktor-faktor apa saja yang dibutuhkan agar sebuah benda tetap tegar.
Dalam merancang sesuatu, para ahli teknik biasanya memperhitungkan hal ini secara saksama. Para ahli perteknikan biasanya menganggap bentuk benda tetap tegar jika benda itu dikenai gaya atau torsi. Mereka juga memperhitungkan faktor elastisitas bahan (Ingat hukum hooke dan elastisitas) dan memperkirakan secara saksama gaya dan torsi maksimum agar benda tetap tegar. Demikian juga para ahli teknik pertubuhan (dokter). Pengetahuan dan pemahaman yang baik dan benar mengenai gaya pada otot dan sendi sangat membantu pasiennya untuk merayakan ulang tahun lagi, mempunyai gigi yang rapi walaupun harus dipagari dengan kawat dulu dkk…..
FLUIDA
Statika fluida
Statika fluida, kadang disebut juga hidrostatika, adalah cabang ilmu yang mempelajari fluida dalam keadaan diam, dan merupakan sub-bidang kajian mekanika fluida. Istilah ini biasanya merujuk pada penerapan matematika pada subyek tersebut. Statika fluida mencakup kajian kondisi fluida dalam keadaan kesetimbangan yang stabil. Penggunaan fluida untuk melakukan kerja disebut hidrolika, dan ilmu mengenai fluida dalam keadaan bergerak disebut sebagai dinamika fluida.
Tekanan statik di dalam fluida
Karena sifatnya yang tidak dapat dengan mudah dimampatkan, fluida dapat menghasilkan tekanan normal pada semua permukaan yang berkontak dengannya. Pada keadaan diam (statik), tekanan tersebut bersifat isotropik, yaitu bekerja dengan besar yang sama ke segala arah. Karakteristik ini membuat fluida dapat mentransmisikan gaya sepanjang sebuah pipa atau tabung, yaitu, jika sebuah gaya diberlakukan pada fluida dalam sebuah pipa, maka gaya tersebut akan ditransmisikan hingga ujung pipa. Jika terdapat gaya lawan di ujung pipa yang besarnya tidak sama dengan gaya yang ditransmisikan, maka fluida akan bergerak dalam arah yang sesuai dengan arah gaya resultan.
Konsepnya pertama kali diformulasikan, dalam bentuk yang agak luas, oleh matematikawan dan filsuf Perancis, Blaise Pascal pada 1647 yang kemudian dikenal sebagai Hukum Pascal. Hukum ini mempunyai banyak aplikasi penting dalam hidrolika. Galileo Galilei, juga adalah bapak besar dalam hidrostatika.
Tekanan hidrostatik
Sevolume kecil fluida pada kedalaman tertentu dalam sebuah bejana akan memberikan tekanan ke atas untuk mengimbangi berat fluida yang ada di atasnya. Untuk suatu volume yang sangat kecil, tegangan adalah sama di segala arah, dan berat fluida yang ada di atas volume sangat kecil tersebut ekuivalen dengan tekanan yang dirumuskan sebagai berikut
dengan (dalam satuan SI),
P adalah tekanan hidrostatik (dalam pascal);
ρ adalah kerapatan fluida (dalam kilogram per meter kubik);
g adalah percepatan gravitasi (dalam meter per detik kuadrat);
h adalah tinggi kolom fluida (dalam meter).
Apungan
Sebuah benda padat yang terbenam dalam fluida akan mengalami gaya apung yang besarnya sama dengan berat fluida yang dipindahkan. Hal ini disebabkan oleh tekanan hidrostatik fluida.
Sebagai contoh, sebuah kapal kontainer dapat mengapung sebab gaya beratnya diimbangi oleh gaya apung dari air yang dipindahkan. Makin banyak kargo yang dimuat, posisi kapal makin rendah di dalam air, sehingga makin banyak air yang "dipindahkan", dan semakin besar pula gaya apung yang bekerja.
Prinsip apungan ini ditemukan oleh Archimedes.
Dinamika fluida
Dinamika fluida adalah subdisiplin dari mekanika fluida yang mempelajari fluida bergerak. Fluida terutama cairan dan gas. Penyelsaian dari masalah dinamika fluida biasanya melibatkan perhitungan banyak properti dari fluida, seperti kecepatan, tekanan, kepadatan, dan suhu, sebagai fungsi ruang dan waktu. Disiplini ini memiliki beberapa subdisiplin termasuk aerodinamika (penelitian gas) dan hidrodinamika (penelitian cairan). Dinamika fluida memliki aplikasi yang luas. Contohnya, ia digunakan dalam menghitung gaya dan moment pada pesawat, mass flow rate dari petroleum dalam jalur pipa, dan perkiraan pola cuaca, dan bahkan teknik lalu lintas, di mana lalu lintas diperlakukan sebagai fluid yang berkelanjutan. Dinamika fluida menawarkan struktur matematika yang membawahi disiplin praktis tersebut yang juga seringkali memerlukan hukum empirik dan semi-empirik, diturunkan dari pengukuran arus, untuk menyelesaikan masalah praktikal.
Statika fluida, kadang disebut juga hidrostatika, adalah cabang ilmu yang mempelajari fluida dalam keadaan diam, dan merupakan sub-bidang kajian mekanika fluida. Istilah ini biasanya merujuk pada penerapan matematika pada subyek tersebut. Statika fluida mencakup kajian kondisi fluida dalam keadaan kesetimbangan yang stabil. Penggunaan fluida untuk melakukan kerja disebut hidrolika, dan ilmu mengenai fluida dalam keadaan bergerak disebut sebagai dinamika fluida.
Tekanan statik di dalam fluida
Karena sifatnya yang tidak dapat dengan mudah dimampatkan, fluida dapat menghasilkan tekanan normal pada semua permukaan yang berkontak dengannya. Pada keadaan diam (statik), tekanan tersebut bersifat isotropik, yaitu bekerja dengan besar yang sama ke segala arah. Karakteristik ini membuat fluida dapat mentransmisikan gaya sepanjang sebuah pipa atau tabung, yaitu, jika sebuah gaya diberlakukan pada fluida dalam sebuah pipa, maka gaya tersebut akan ditransmisikan hingga ujung pipa. Jika terdapat gaya lawan di ujung pipa yang besarnya tidak sama dengan gaya yang ditransmisikan, maka fluida akan bergerak dalam arah yang sesuai dengan arah gaya resultan.
Konsepnya pertama kali diformulasikan, dalam bentuk yang agak luas, oleh matematikawan dan filsuf Perancis, Blaise Pascal pada 1647 yang kemudian dikenal sebagai Hukum Pascal. Hukum ini mempunyai banyak aplikasi penting dalam hidrolika. Galileo Galilei, juga adalah bapak besar dalam hidrostatika.
Tekanan hidrostatik
Sevolume kecil fluida pada kedalaman tertentu dalam sebuah bejana akan memberikan tekanan ke atas untuk mengimbangi berat fluida yang ada di atasnya. Untuk suatu volume yang sangat kecil, tegangan adalah sama di segala arah, dan berat fluida yang ada di atas volume sangat kecil tersebut ekuivalen dengan tekanan yang dirumuskan sebagai berikut
dengan (dalam satuan SI),
P adalah tekanan hidrostatik (dalam pascal);
ρ adalah kerapatan fluida (dalam kilogram per meter kubik);
g adalah percepatan gravitasi (dalam meter per detik kuadrat);
h adalah tinggi kolom fluida (dalam meter).
Apungan
Sebuah benda padat yang terbenam dalam fluida akan mengalami gaya apung yang besarnya sama dengan berat fluida yang dipindahkan. Hal ini disebabkan oleh tekanan hidrostatik fluida.
Sebagai contoh, sebuah kapal kontainer dapat mengapung sebab gaya beratnya diimbangi oleh gaya apung dari air yang dipindahkan. Makin banyak kargo yang dimuat, posisi kapal makin rendah di dalam air, sehingga makin banyak air yang "dipindahkan", dan semakin besar pula gaya apung yang bekerja.
Prinsip apungan ini ditemukan oleh Archimedes.
Dinamika fluida
Dinamika fluida adalah subdisiplin dari mekanika fluida yang mempelajari fluida bergerak. Fluida terutama cairan dan gas. Penyelsaian dari masalah dinamika fluida biasanya melibatkan perhitungan banyak properti dari fluida, seperti kecepatan, tekanan, kepadatan, dan suhu, sebagai fungsi ruang dan waktu. Disiplini ini memiliki beberapa subdisiplin termasuk aerodinamika (penelitian gas) dan hidrodinamika (penelitian cairan). Dinamika fluida memliki aplikasi yang luas. Contohnya, ia digunakan dalam menghitung gaya dan moment pada pesawat, mass flow rate dari petroleum dalam jalur pipa, dan perkiraan pola cuaca, dan bahkan teknik lalu lintas, di mana lalu lintas diperlakukan sebagai fluid yang berkelanjutan. Dinamika fluida menawarkan struktur matematika yang membawahi disiplin praktis tersebut yang juga seringkali memerlukan hukum empirik dan semi-empirik, diturunkan dari pengukuran arus, untuk menyelesaikan masalah praktikal.
TITIK BERAT
Keseimbangan Benda Tegar : Titik Berat
Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.
Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.
Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.
Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya.
Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.
Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.
Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.
Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.
Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.
Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.
Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya.
Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.
Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.
Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.
PRINSIP KERJA ROKET
Prinsip Kerja Roket
Dorongan roket dan jet merupakan penerapan yang menarik dari hukum III Newton dan Kekekalan momentum. Roket memiliki tangki yang berisi bahan bakar hodrogen cair dan oksigen cair. Bahan bakar tersebut dibakar dalam ruang pembakaran sehingga menghasilkan gas lalu dibuang melalui mulut pipa yang terletak dibelakang roket. Akibatnya terjadi perubahan momentum pada gas selama selang waktu tertentu. Berdasarkan hukum II Newton, perubahan momentum selama suatu selang waktu tertentu = gaya total. Jadi bisa dikatakan bahwa terdapat gaya total pada gas yang disemburkan roket ke belakang. Gaya total tersebut merupakan gaya aksi yang diberikan oleh roket kepada gas, di mana arahnya ke bawah. Sebagai tanggapan, gas memberikan gaya reaksi kepada roket, di mana besar gaya reaksi = gaya aksi, hanya arahnya berlawanan. Gaya reaksi yang diberikan oleh gas tersebut yang mendorong roket ke atas.
Dorongan roket dan jet merupakan penerapan yang menarik dari hukum III Newton dan Kekekalan momentum. Roket memiliki tangki yang berisi bahan bakar hodrogen cair dan oksigen cair. Bahan bakar tersebut dibakar dalam ruang pembakaran sehingga menghasilkan gas lalu dibuang melalui mulut pipa yang terletak dibelakang roket. Akibatnya terjadi perubahan momentum pada gas selama selang waktu tertentu. Berdasarkan hukum II Newton, perubahan momentum selama suatu selang waktu tertentu = gaya total. Jadi bisa dikatakan bahwa terdapat gaya total pada gas yang disemburkan roket ke belakang. Gaya total tersebut merupakan gaya aksi yang diberikan oleh roket kepada gas, di mana arahnya ke bawah. Sebagai tanggapan, gas memberikan gaya reaksi kepada roket, di mana besar gaya reaksi = gaya aksi, hanya arahnya berlawanan. Gaya reaksi yang diberikan oleh gas tersebut yang mendorong roket ke atas.
GETARAN
Getaran adalah suatu gerak bolak-balik di sekitar kesetimbangan. Kesetimbangan di sini maksudnya adalah keadaan dimana suatu benda berada pada posisi diam jika tidak ada gaya yang bekerja pada benda tersebut. Getaran mempunyai amplitudo (jarak simpangan terjauh dengan titik tengah) yang sama.
Jenis getaran
Getaran bebas terjadi bila sistem mekanis dimulai dengan gaya awal, lalu dibiarkan bergetar secara bebas. Contoh getaran seperti ini adalah memukul garpu tala dan membiarkannya bergetar, atau bandul yang ditarik dari keadaan setimbang lalu dilepaskan.
Getaran paksa terjadi bila gaya bolak-balik atau gerakan diterapkan pada sistem mekanis. Contohnya adalah getaran gedung pada saat gempa bumi.
Analisis getaran
Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai "jumlahan" model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.
Getaran bebas tanpa peredam
Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang mempengaruhi massa (getaran bebas).
Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum Hooke, atau bila dirumuskan secara matematis:
dengan k adalah tetapan pegas.
Sesuai Hukum kedua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:
Karena F = Fs, kita mendapatkan persamaan diferensial biasa berikut:
Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:
Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:
Catatan: frekuensi sudut ω (ω = 2πf) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan Hz) ketika menyatakan frekuensi sistem.
Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.
Getaran bebas dengan redaman
Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)
Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (ζ) adalah
Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.
Solusi sistem kurang redam pada model massa-pegas-peredam adalah
Nilai X, amplitudo awal, dan φ, ingsutan fase, ditentukan oleh panjang regangan pegas.
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.
Frekuensi dalam hal ini disebut "frekuensi alamiah teredam", fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.
Jenis getaran
Getaran bebas terjadi bila sistem mekanis dimulai dengan gaya awal, lalu dibiarkan bergetar secara bebas. Contoh getaran seperti ini adalah memukul garpu tala dan membiarkannya bergetar, atau bandul yang ditarik dari keadaan setimbang lalu dilepaskan.
Getaran paksa terjadi bila gaya bolak-balik atau gerakan diterapkan pada sistem mekanis. Contohnya adalah getaran gedung pada saat gempa bumi.
Analisis getaran
Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai "jumlahan" model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.
Getaran bebas tanpa peredam
Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang mempengaruhi massa (getaran bebas).
Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum Hooke, atau bila dirumuskan secara matematis:
dengan k adalah tetapan pegas.
Sesuai Hukum kedua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:
Karena F = Fs, kita mendapatkan persamaan diferensial biasa berikut:
Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:
Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:
Catatan: frekuensi sudut ω (ω = 2πf) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan Hz) ketika menyatakan frekuensi sistem.
Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.
Getaran bebas dengan redaman
Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)
Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan
Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.
Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:
Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (ζ) adalah
Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.
Solusi sistem kurang redam pada model massa-pegas-peredam adalah
Nilai X, amplitudo awal, dan φ, ingsutan fase, ditentukan oleh panjang regangan pegas.
Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.
Frekuensi dalam hal ini disebut "frekuensi alamiah teredam", fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.
Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.
DAYA
Daya dalam fisika adalah laju energi yang dihantarkan atau kerja yang dilakukan per satuan waktu. Daya dilambangkan dengan P. Mengikuti definisi ini daya dapat dirumuskan sebagai:
di mana
P adalah daya
W adalah kerja, atau energi
t adalah waktu
Daya rata-rata (sering disebut sebagai "daya" saja bila konteksnya jelas) adalah kerja rata-rata atau energi yang dihantarkan per satuan waktu. Daya sesaat adalah limit daya rata-rata ketika selang waktu Δt mendekati nol.
Bila laju transfer energi atau kerja tetap, rumus di atas dapat disederhanakan menjadi:
di mana W, E adalah kerja yang dilakukan, atau energi yang dihantarkan, dalam waktu t (biasanya diukur dalam satuan detik).
Satuan daya dalam SI adalah watt.
di mana
P adalah daya
W adalah kerja, atau energi
t adalah waktu
Daya rata-rata (sering disebut sebagai "daya" saja bila konteksnya jelas) adalah kerja rata-rata atau energi yang dihantarkan per satuan waktu. Daya sesaat adalah limit daya rata-rata ketika selang waktu Δt mendekati nol.
Bila laju transfer energi atau kerja tetap, rumus di atas dapat disederhanakan menjadi:
di mana W, E adalah kerja yang dilakukan, atau energi yang dihantarkan, dalam waktu t (biasanya diukur dalam satuan detik).
Satuan daya dalam SI adalah watt.
GERAK DENGAN ANALISIS VEKTOR
GERAK LURUS
Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.
Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.
Gerak lurus beraturan
Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.
dengan arti dan satuan dalam SI:
* s = jarak tempuh (m)
* v = kecepatan (m/s)
* t = waktu (s)
Gerak lurus berubah beraturan
Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.
dengan arti dan satuan dalam SI:
* v0 = kecepatan mula-mula (m/s)
* a = percepatan (m/s2)
* t = waktu (s)
* s = Jarak tempuh/perpindahan (m)
GERAK PARABOLA
Pengertian Gerak Peluru
Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.
Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.
Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.
Jenis-jenis Gerak Parabola
Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.
Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.
Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.
Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.
Menganalisis Gerak Parabola
Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.
Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).
Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.
Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).
Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.
Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.
Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.
Menganalisis Komponen Gerak Parabola secara terpisah
Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut
Komponen kecepatan awal
Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.
Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru
Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini
Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :
Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.
Kecepatan dan perpindahan benda pada arah horisontal
Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.
Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :
Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.
Perpindahan horisontal dan vertikal
Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :
Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.
Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :
Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.
Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.
Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.
Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.
Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.
Pembuktian Matematis Gerak Peluru = Parabola
Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.
Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2
Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum
y = ax – bx2
Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.
Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.
Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.
Gerak lurus beraturan
Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.
dengan arti dan satuan dalam SI:
* s = jarak tempuh (m)
* v = kecepatan (m/s)
* t = waktu (s)
Gerak lurus berubah beraturan
Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.
dengan arti dan satuan dalam SI:
* v0 = kecepatan mula-mula (m/s)
* a = percepatan (m/s2)
* t = waktu (s)
* s = Jarak tempuh/perpindahan (m)
GERAK PARABOLA
Pengertian Gerak Peluru
Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.
Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.
Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.
Jenis-jenis Gerak Parabola
Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.
Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.
Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.
Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.
Menganalisis Gerak Parabola
Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.
Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).
Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.
Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).
Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.
Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.
Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.
Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.
Menganalisis Komponen Gerak Parabola secara terpisah
Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut
Komponen kecepatan awal
Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.
Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap gerakan yang mempunyai kecepatan awal termasuk gerak peluru
Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini
Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :
Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.
Kecepatan dan perpindahan benda pada arah horisontal
Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.
Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :
Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.
Perpindahan horisontal dan vertikal
Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :
Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.
Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :
Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.
Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.
Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.
Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.
Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.
Pembuktian Matematis Gerak Peluru = Parabola
Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.
Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2
Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum
y = ax – bx2
Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.
Langganan:
Postingan (Atom)