Sabtu, 12 Desember 2009

USAHA DAN ENERGI

USAHA

Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.



Persamaan matematisnya adalah :

W = Fs cos 0 = Fs (1) = Fs

W adalah usaha alias kerja, F adalah besar gaya yang searah dengan perpindahan dan s adalah besar perpindahan.

Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos teta



Secara matematis dirumuskan sebagai berikut :



Hasil perkalian antara besar gaya (F) dan besar perpindahan (s) di atas merupakan bentuk perkalian titik atau perkalian skalar. Karenanya usaha masuk dalam kategori besaran skalar. Pelajari lagi perkalian vektor dan skalar kalau dirimu bingun… Persamaan di atas bisa ditulis dalam bentuk seperti ini :

Satuan Usaha dalam Sistem Internasional (SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.

Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o = 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan nol. Contoh lain adalah ketika dirimu mendorong tembok sampai puyeng… jika tembok tidak berpindah tempat maka walaupun anda mendorong sampai banjir keringat, anda tidak melakukan usaha. Kita dapat menyimpulkan bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan perpindahan dan arah gaya tegak lurus dengan arah perpindahan.

ENERGI

Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas tuntas dalam pokok bahasan tersendiri.

Dalam kehidupan sehari-hari terdapat banyak jenis energi. Energi kimia pada bahan bakar membantu kita menggerakan kendaraan, demikian juga energi kimia pada makanan membantu makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak jenis energi dalam kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah menjadi energi panas (setrika listrik), energi gerak (kipas angin) dan sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita ketika energi mengalami perubahan bentuk, misalnya energi listrik berubah menjadi energi gerak (kipas angin), atau energi kimia berubah menjadi energi gerak (mesin kendaraan).

Pada kesempatan ini kita akan mempelajari dua jenis energi yang sebenarnya selalu kita jumpai dalam kehidupan sehari-hari, yakni energi potensial dan energi kinetik translasi. Energi potensial dapat berubah bentuk menjadi energi kinetik ketika benda bergerak lurus dan sebaliknya energi kinetik juga bisa berubah bentuk menjadi energi potensial. Total kedua energi ini disebut energi mekanik, yang besarnya tetap alias kekal. Mari kita pelajari kedua jenis energi ini secara lebih mendalam…

Energi Potensial

Energi potensial merupakan energi yang dihubungkan dengan gaya-gaya yang bergantung pada posisi atau wujud benda dan lingkungannya. Banyak sekali contoh energi potensial dalam kehidupan kita. Karet ketapel yang kita regangkan memiliki energi potensial. Karet ketapel dapat melontarkan batu karena adanya energi potensial pada karet yang diregangkan. Demikian juga busur yang ditarik oleh pemanah dapat menggerakan anak panah, karena terdapat energi potensial pada busur yang diregangkan. Contoh lain adaah pegas yang ditekan atau diregangkan. Energi potensial pada tiga contoh ini disebut senergi potensial elastik. Energi kimia pada makanan yang kita makan atau energi kimia pada bahan bakar juga termasuk energi potensial. Ketika makanan di makan atau bahan bakar mengalami pembakaran, baru energi kimia yang terdapat pada makanan atau bahan bakar tersebut dapat dimanfaatkan. Energi magnet juga termasuk energi potensial. Ketika kita memegang sesuatu yang terbuat dari besi di dekat magnet, pada benda tersebut sebenarnya bekerja energi potensial magnet. Ketika kita melepaskan benda yang kita pegang (paku, misalnya), dalam waktu singkat paku tersebut bergerak menuju magnet dan menempel pada magnet. Perlu dipahami bahwa paku memiliki energi potensial magnet ketika berada jarak tertentu dari magnet; ketika menempel pada magnet, energi potensial bernilai nol.

Energi Potensial Gravitasi

Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah ;) atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas… FA = gaya angkat

W = FA . s = (m)(-g) (s) = – mg(h2-h1) —– persamaan 1

Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah…



Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 – h1

EP = mgh —— persamaan 2

Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.

Jika kita gabungkan persamaan 1 dengan persamaan 2 :


Persamaan ini menyatakan bahwa usaha yang dilakukan oleh gaya yang menggerakan benda dari h1 ke h2 (tanpa percepatan) sama dengan perubahan energi potensial benda antara h1 dan h2. Setiap bentuk energi potensial memiliki hubungan dengan suatu gaya tertentu dan dapat dinyatakan sama dengan EP gravitasi. Secara umum, perubahan EP yang memiliki hubungan dengan suatu gaya tertentu, sama dengan usaha yang dilakukan gaya jika benda dipindahkan dari kedudukan pertama ke kedudukan kedua. Dalam makna yang lebih sempit, bisa dinyatakan bahwa perubahan EP merupakan usaha yang diperlukan oleh suatu gaya luar untuk memindahkan benda antara dua titik, tanpa percepatan.

Energi Potensial Elastis

Sebagaimana dijelaskan pada bagian awal tulisan ini, selain energi potensial gravitasi terdapat juga energi potensial elastis. EP elestis berhubungan dengan benda-benda yang elastis, misalnya pegas. Mari kita bayangkan sebuah pegas yang ditekan dengan tangan. Apabila kita melepaskan tekanan pada pegas, maka pegas tersebut melakukan usaha pada tangan kita. Efek yang dirasakan adalah tangan kita terasa seperti di dorong. Apabila kita menempelkan sebuah benda pada ujung pegas, kemudian pegas tersebut kita tekan, maka setelah dilepaskan benda yang berada di ujung pegas pasti terlempar…. perhatikan gambar di bawah. Jika dirimu mempunyai koleksi pegas, baik di rumah maupun di sekolah, silahkan melakukan percobaan ini untuk membuktikannya….



Ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan gambar a (lihat gambar di bawah). Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x, yakni :

FT = kx



k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih adalah :

FP = -kx

Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Ini adalah persamaan hukum Hooke. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar).

Untuk menghitung Energi Potensial pegas yang ditekan atau diregangkan, terlebih dahulu kita hitung gaya usaha yang diperlukan untuk menekan atau meregangkan pegas. Kita tidak bisa menggunakan persamaan W = F s = F x, karena gaya tekan atau gaya regang yang kita berikan pada pegas selalu berubah-ubah selama pegas ditekan. Ketika menekan pegas misalnya, semakin besar x, gaya tekan kita juga semakin besar. Beda dengan gaya angkat yang besarnya tetap ketika kita mengangkat batu. Lalu bagaimana cara mengakalinya ?

Kita menggunakan gaya rata-rata. Gaya tekan atau gaya regang selalu berubah, dari F = 0 ketika x = 0 sampai F = kx (ketika pegas tertekan atau teregang sejauh x). Besar gaya rata-rata adalah :



x merupakan jarak total pegas yang teregang atau pegas yang tertekan (bandingkan dengan gambar di atas).

Usaha yang dilakukan adalah :




Energi Kinetik

Setiap benda yang bergerak memiliki energi. Ketapel yang ditarik lalu dilepaskan sehingga batu yang berada di dalam ketapel meluncur dengan kecepatan tertentu. Batu yang bergerak tersebut memiliki energi. Jika diarahkan pada ayam tetangga maka kemungkinan besar ayam tersebut lemas tak berdaya akibat dihajar batu. Pada contoh ini batu melakukan kerja pada ayam ;) Kendaraan beroda yang bergerak dengan laju tertentu di jalan raya juga memiliki energi kinetik. Ketika dua buah kendaraan yang sedang bergerak saling bertabrakan, maka bisa dipastikan kendaraan akan digiring ke bengkel untuk diperbaiki. Kerusakan akibat tabrakan terjadi karena kedua mobil yang pada mulanya bergerak melakukan usaha / kerja satu terhadap lainnya. Ketika tukang bangunan memukul paku menggunakan martil, martil yang digerakan tukang bangunan melakukan kerja pada paku.

Setiap benda yang bergerak memberikan gaya pada benda lain dan memindahkannya sejauh jarak tertentu. Benda yang bergerak memiliki kemampuan untuk melakukan kerja, karenanya dapat dikatakan memiliki energi. Energi pada benda yang bergerak disebut energi kinetik. Kata kinetik berasal dari bahasa yunani, kinetikos, yang artinya “gerak”. ketika benda bergerak, benda pasti memiliki kecepatan. Dengan demikian, kita dapat menyimpulkan bahwa energi kinetik merupakan energi yang dimiliki benda karena gerakannya atau kecepatannya.

Sekarang mari kita turunkan persamaan Energi Kinetik.

Untuk menurunkan persamaan energi kinetik, bayangkanlah sebuah benda bermassa m sedang bergerak pada lintasan lurus dengan laju awal vo.



Agar benda dipercepat beraturan sampai bergerak dengan laju v maka pada benda tersebut harus diberikan gaya total yang konstan dan searah dengan arah gerak benda sejauh s. Untuk itu dilakukan usaha alias kerja pada benda tersebut sebesar W = F s. Besar gaya F = m a.

Karena benda memiliki laju awal vo, laju akhir vt dan bergerak sejauh s, maka untuk menghitung nilai percepatan a, kita menggunakan persamaan vt2 = vo2 + 2as.



Kita subtitusikan nilai percepatan a ke dalam persamaan gaya F = m a, untuk menentukan besar usaha :

Persamaan ini menjelaskan usaha total yang dikerjakan pada benda. Karena W = EK maka kita dapat menyimpulkan bahwa besar energi kinetik translasi pada benda tersebut adalah :

W = EK = ½ mv2 —– persamaan 2

Persamaan 1 di atas dapat kita tulis kembali menjadi :



Persamaan 3 menyatakan bahwa usaha total yang bekerja pada sebuah benda sama dengan perubahan energi kinetiknya. Pernyataan ini merupakan prinsip usaha-energi. Prinsip usaha-energi berlaku jika W adalah usaha total yang dilakukan oleh setiap gaya yang bekerja pada benda. Jika usaha positif (W) bekerja pada suatu benda, maka energi kinetiknya bertambah sesuai dengan besar usaha positif tersebut (W). Jika usaha (W) yang dilakukan pada benda bernilai negatif, maka energi kinetik benda tersebut berkurang sebesar W. Dapat dikatakan bahwa gaya total yang diberikan pada benda di mana arahnya berlawanan dengan arah gerak benda, maka gaya total tersebut mengurangi laju dan energi kinetik benda. Jika besar usaha total yang dilakukan pada benda adalah nol, maka besar energi kinetik benda tetap (laju benda konstan).

MOMENTUM, IMPULS & TUMBUKAN



Rabu, 09 Desember 2009

GERAK HARMONIS SEDERHANA

GERAK HARMONIS SEDERHANA

Gerak Harmonis Sederhana adalah gerak bolak - balik suatu benda melewati titik keseimbangan. Contohnya, bandul jam yang bergerak ke kiri dan ke kanan, penggaris yang salah satu ujungnya dijepit di meja dan ujung lainnya digetarkan.

Dalam Gerak Harmonis Sederhana, benda terbagi menjadi tiga bagian. Dimana tiap benda yang bergerak secara harmonis akan memiliki simpangan, kecepatan ,dan percepatan. Ketiganya nanti akan dibahas secara lebih lanjut di halaman berikutnya. Termasuk pula akan dibahas mengenai sudut fase, fase, dan beda fase


# Simpangan, Kecepatan, dan Percepatan GHS

1. Simpangan GHS

Untuk menghitung besarnya simpangan pada gerak harmonis sederhana digunakan rumus:
atau
Bila besarnya sudut awal (Θ 0) adalah 0 maka persamaan simpangannya menjadi:

dengan:
y = simpangan (m)
A = amplitudo atau simpangan maksimum (m)
t = waktu getar (s)
w = kecepatan sudut (rad/s)

Simpangan akan bernilai maksimum (ymaks) jika sin wt = 1 sehingga persamaannya menjadi:


# Kecepatan GHS

Besarnya kecepatan gerak harmonis dapat dicari dengan persamaan:

Besarnya kecepatan akan mencapai nilai maksimun bila besarnya cos wt = 1, sehingga persamaannya menjadi:


# Percepatan GHS

Besarnya percepatan pada gerak harmonis sederhana dapat dihitung dengan rumus:
atau

Dan besarnya percepatan akan mencapai nilai maksimal apabila besarnya sin wt = 1, sehingga:


#
Percepatan Maksimal
Besarnya percepatan bernilai negatif menunjukkan arah percepatan a berlawanan dengan arah perpindahan y (y adalah perpindahan dari titik keseimbangan)


Sudut Fase, Fase, dan Beda Fase GHS

Berdasarkan dari persamaan simpangan:



bila diturunkan akan menjadi,

Faktor Θ disebut sudut fase, yaitu posisi sudut selama benda bergerak harmonis.

Fase atau tingkat getar adalah sudut fase dibagi dengan sudut tempuh selama satu putaran penuh. Sehingga besarnya fase dapat dihitung dari persamaan:

Nilai fase biasanya hanya diambil bilangan pecahannya saja Misalkannya saja besarnya fase getaran adalah 1/4, 11/4, 21/4 maka besarnya fase cukup disebut 1/4 saja karena posisi partikel yang bergetar untuk ketiga fase getar tersebut sama. Bilangan bulat di depan pecahan, menunjukkan banyaknya getaran penuh yang terlewati.

Pembahasan tentang fase dibagi menjadi dua, yaitu:

1. Beda fase getaran suatu titik dengan selang waktu t= t1 dan t= t2
Persamaan yang dipakai untuk menghitung besarnya beda fase dengan selang waktu dari t1 sampai t2 adalah:

Beda fase dua getaran pada waktu sama
Kita juga dapat menghitung beda fase dua getaran pada waktu yang sama. Misalkan dua getaran masing - masing dengan periode T1 dan T2 maka beda fase keduanya setelah bergetar selama t sekon dapat dicari dengan persamaan:

#

2. Dua kedudukan tersebut akan dikatan sefase bila nilai beda fase merupakan bilangan cacah (tanpa pecahan ataupun desimal). Sebaliknya kedudukan akan dikatakan berlawanan fase apabila nilai beda fase berupa bilangan cacah+1/2(dengan pecahan ataupun desimal).

# Superposisi Dua Simpangan Gerak Harmonis yang Segaris

Jika ada dua persamaan simpangan yang dialami oleh suatu partikel pada saat yang sama, maka simpangan akibat kedua getaran dapat dicaari dengan dua cara, yaitu secara grafis dan secara maematis. Berikut adalah pembahasan mengenai kedua cara tersebut.

1. Secara Grafis

Berikut adalah gambar Superposisi dua gerak harmonis sederhana,
Grafik Superposisi

2. Secara Matematis

Dalam perhitungan secara matematis dua gerak harmonis memiliki simpangannya masing - masing. Untuk mencari simpangan superposisinya maka kedua simpangan itu dijumlahkan (y = y1 + y2) sehingga didapatkan persamaan sebagai berikut:


Penurunan Rumus Periode (T) dan Frekuensi (f)

Dalam pembahasan suba bab ini, kita akan membahasa mengenai Periode (T) dan frekuensi (f). Dalam bahasan ini, akan membahas pula mengenai gaya pemulih. Karena itu, pembahasannya akan dibatasi hanya sampai pada pegas dan ayunan sederhana.

1. Pegas

Dalam pegas untuk perhitungan Periodenya digunakan rumus:

sedangkan besarnya frekuensi berbanding terbalik dengan periodenya ( f = 1/T), sehingga didapatkan rumus frekuensi sebagai berikut:

dengan,
m = massa beban (kg)
k = konstanta pegas (N/m)
Sedangkan bila konstanta pegas belum diketahui, konstatanya dapat dihitung dengan persamaan:

dengan,
g = gaya gravitasi (9,8 N/kg atau 10 N/kg)
x = perpanjangan pegas (m)
Bila pegas yang dipakai lebih dari satu, maka untuk mencari konstantanya harus menggunakan konstanta total. Untuk menghitung konstanta total tergantung dari rangkaian pegas itu sendiri. Bila beberapa pegas dirangkai secara seri, maka untuk mencari konstanta totalnya mengunakan rumus:

Konstanta Pegas Total Seri
Sedangkan untuk pegas yang dirangkai paralel mengunakan rumus:

Ayunan Sederhana

Sedangkan dalam ayunan sederhana untuk mencari besarnya Periode digunakan rumus:


Kemudian dalam mencari frekuensi, karena nilai frekuensi berbanding terbalik dengan periode maka didapatkan rumus:

dengan,
l = panjang tali (m)
g = gaya gravitasi bumi (m/s2)

ELASTISITAS

ELASTISITAS

Ketika dirimu menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. silahkan dicoba kalau tidak percaya. Jika tarikanmu dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika dirimu merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Apabila di laboratorium sekolah anda terdapat pegas, silahkan melakukan pembuktian ini. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena benda-benda tersebut memiliki sifat elastis. Elastis atau elastsisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.

Perlu anda ketahui bahwa gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas. Batas elastis itu apa ? lalu bagaimana kita bisa mengetahui hubungan antara besarnya gaya yang diberikan dan perubahan panjang minimum sebuah benda elastis agar benda tersebut bisa kembali ke bentuk semula ? untuk menjawab pertanyaan ini, mari kita berkenalan dengan paman Hooke.

HUKUM HOOKE

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.



Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).



Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).



Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :


Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.


Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :



Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.



Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :


Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.


Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …



Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah

Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

Tegangan

Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :


Satuan tegangan adalah N/m2 (Newton per meter kuadrat)

Regangan

Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :


Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).

Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :



Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat