Penggunaan Operasi Integral Dan Diferensial/Turunan
Posisi (r), Kecepatan (v) dan percepatan (a) dengan penyelesaian matematis menggunakan diferensial/turunan dan integral bisa didapatkan bila salah satu variable diketahui persamaannya.
Lihat Diagram berikut !
* Bila r diketahui, maka v dan a dapat dicari dengan diferensial/turunan, demikian juga bila v diketahui a didapat dari penurunan v * Bila diketahui, maka persamaan kecepatan (v) dan posisi (r) dapat ditentukan dengan integral, demikian pula bila v diketahui, posisi dapat diselesaikan.
Dalam beberapa hal, lebih mudah mencari lokasi/posisi suatu titik dengan menggunakan koordinat polar. Koordinat polar menunjukkan posisi relatif terhadap titik kutub O dan sumbu polar (ray) yang diberikan dan berpangkal pada O.
Titik P dengan koordinat polar (r, q) berarti berada diposisi:
- q derajat dari sumbu-x (sb. polar)
(q diukur berlawanan arah jarum-jam)
- berjarak sejauh r dari titik asal kutub O.
Perhatian:
jika r <>, maka P berada di posisi yang
berlawanan arah.
r : koordinat radial
q : koordinat sudut
Koordinat kartesius
Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z.
gambar koordinat kartesius :
Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai x ditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik.
Karena kedua sumbu bertegak lurus satu sama lain, bidang xy terbagi menjadi empat bagian yang disebut kuadran, yang pada Gambar 3 ditandai dengan angka I, II, III, dan IV. Menurut konvensi yang berlaku, keempat kuadran diurutkan mulai dari yang kanan atas (kuadran I), melingkar melawan arah jarum jam (lihat Gambar 3). Pada kuadran I, kedua koordinat (x dan y) bernilai positif. Pada kuadran II, koordinat x bernilai negatif dan koordinat y bernilai positif. Pada kuadran III, kedua koordinat bernilai negatif, dan pada kuadran IV, koordinat x bernilai positif dan y negatif
HUKUM NEWTON I HUKUM NEWTON I disebut juga hukum kelembaman (Inersia). Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan. DEFINISI HUKUM NEWTON I : Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan gaya (F) yang bekerja pada benda itu, jadi: F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)
HUKUM NEWTON II a = F/m F = m a F = jumlah gaya-gaya pada benda m = massa benda a = percepatan benda Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.
HUKUM NEWTON III
DEFINISI HUKUM NEWTON III: Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan. F aksi = - F reaksi N dan T1 = aksi reaksi (bekerja pada dua benda) T2 dan W = bukan aksi reaksi (bekerja pada tiga benda)
Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet.
Hukum I Kepler
Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.
Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.
Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).
F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.
Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.
Hukum II Kepler
Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.
Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.
Hukum III Kepler
Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.
Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka
Gesekan biasanya terjadi di antara dua permukaan benda yang bersentuhan, baik terhadap udara, air atau benda padat. Ketika sebuah benda bergerak di udara, permukaan benda tersebut akan bersentuhan dengan udara sehingga terjadi gesekan antara benda tersebut dengan udara. Demikian juga ketika bergerak di dalam air. Gaya gesekan juga selalu terjadi antara permukaan benda padat yang bersentuhan, sekalipun benda tersebut sangat licin. Permukaan benda yang sangat licin pun sebenarnya sangat kasar dalam skala mikroskopis. Ketika kita mencoba menggerakan sebuah benda, tonjolan-tonjolan miskroskopis ini mengganggu gerak tersebut. Sebagai tambahan, pada tingkat atom (ingat bahwa semua materi tersusun dari atom-atom), sebuah tonjolan pada permukaan menyebabkan atom-atom sangat dekat dengan permukaan lainnya, sehingga gaya-gaya listrik di antara atom dapat membentuk ikatan kimia, sebagai penyatu kecil di antara dua permukaan benda yang bergerak. Ketika sebuah benda bergerak, misalnya ketika kita mendorong sebuah buku pada permukaan meja, gerakan buku tersebut mengalami hambatan dan akhirnya berhenti, karena terjadi gesekan antara permukaan bawah buku dengan permukaan meja serta gesekan antara permukaan buku dengan udara, di mana dalam skala miskropis, hal ini terjadi akibat pembentukan dan pelepasan ikatan tersebut.
Jika permukaan suatu benda bergeseran dengan permukaan benda lain, masing-masing benda tersebut melakukan gaya gesekan antara satu dengan yang lain. Gaya gesekan pada benda yang bergerak selalu berlawanan arah dengan arah gerakan benda tersebut. Selain menghambat gerak benda, gesekan dapat menimbulkan aus dan kerusakan. Hal ini dapat kita amati pada mesin kendaraan. Misalnya ketika kita memberikan minyak pelumas pada mesin sepeda motor, sebenarnya kita ingin mengurangi gaya gesekan yang terjadi di dalam mesin. Jika tidak diberi minyak pelumas maka mesin kendaraan kita cepat rusak. Contoh ini merupakan salah satu kerugian yang disebabkan oleh gaya gesek.
Kita dapat berjalan karena terdapat gaya gesek antara permukaan sandal atau sepatu dengan permukaan tanah. Jika anda tidak biasa menggunakan alas kaki ;) gaya gesek tersebut bekerja antara permukaan bawah kaki dengan permukaan tanah atau lantai. Alas sepatu atau sandal biasanya kasar / bergerigi alias tidak licin. Para pembuat sepatu dan sandal membuatnya demikian karena mereka sudah mengetahui konsep gaya gesekan. Demikian juga alas sepatu bola yang dipakai oleh pemain sepak bola, yang terdiri dari tonjolan-tonjolan kecil. Apabila alas sepatu atau sandal sangat licin, maka anda akan terpeleset ketika berjalan di atas lantai yang licin atau gaya gesek yang bekerja sangat kecil sehingga akan mempersulit gerakan anda. Ini merupakan contoh gaya gesek yang menguntungkan.
Ketika sebuah benda berguling di atas suatu permukaan (misalnya roda kendaraan yang berputar atau bola yang berguling di tanah), gaya gesekan tetap ada walaupun lebih kecil dibandingkan dengan ketika benda tersebut meluncur di atas permukaan benda lain. Gaya gesekan yang bekerja pada benda yang berguling di atas permukaan benda lainnya dikenal dengan gaya gesekan rotasi. Sedangkan gaya gesekan yang bekerja pada permukaan benda yang meluncur di atas permukaan benda lain (misalnya buku yang didorong di atas permukaan meja) disebut sebagai gaya gesekan translasi. Pada kesempatan ini kita hanya membahas gaya gesekan translasi, yaitu gaya gesekan yang bekerja pada benda padat yang meluncur di atas benda padat lainnya.
GAYA GESEKAN STATIK DAN KINETIK
Lakukanlah percobaan berikut ini untuk menambah pemahaman anda. Letakanlah sebuah balok pada permukaan meja. Ikatlah sebuah neraca pegas (alat untuk mengukur besar gaya) pada sisi depan balok tersebut. Sekarang, tarik pegas perlahan-lahan sambil mengamati perubahan skala pada neraca pegas. Tampak bahwa balok tidak bergerak jika diberikan gaya yang kecil. Balok belum bergerak karena gaya tarik yang kita berikan pada balok diimbangi oleh gaya gesekan antara alas balok dengan permukaan meja. Ketika balok belum bergerak, besarnya gaya gesekan sama dengan gaya tarik yang kita berikan. Jika tarikan kita semakin kuat, terlihat bahwa pada suatu harga tertentu balok mulai bergerak. Pada saat balok mulai bergerak, gaya yang sama menghasilkan gaya dipercepat. Dengan memperkecil kembali gaya tarik tersebut, kita dapat menjaga agar balok bergerak dengan laju tetap; tanpa percepatan. Kita juga bisa mempercepat gerak balok tersebut dengan menambah gaya tarik.
Gaya gesekan yang bekerja pada dua permukaan benda yang bersentuhan, ketika benda tersebut belum bergerak disebut gaya gesek statik (lambangnya fs). Gaya gesek statis yang maksimum sama dengan gaya terkecil yang dibutuhkan agar benda mulai bergerak. Ketika benda telah bergerak, gaya gesekan antara dua permukaan biasanya berkurang sehingga diperlukan gaya yang lebih kecil agar benda bergerak dengan laju tetap. Ketika benda telah bergerak, gaya gesekan masih bekerja pada permukaan benda yang bersentuhan tersebut. Gaya gesekan yang bekerja ketika benda bergerak disebut gaya gesekan kinetik (lambangnya fk) (kinetik berasal dari bahasa yunani yang berarti “bergerak”). Ketika sebuah benda bergerak pada permukaan benda lain, gaya gesekan bekerja berlawanan arah terhadap kecepatan benda. Hasil eksperimen menunjukkan bahwa pada permukaan benda yang kering tanpa pelumas, besar gaya gesekan sebanding dengan Gaya Normal.
KOOFISIEN GESEKAN STATIK DAN KINETIK
Perhatikan bahwa hubungan antara gaya normal dan gaya gesekan pada persamaan di atas hanya untuk besarnya saja. Arah kedua gaya tersebut selalu saling tegak lurus satu dengan yang lain, sebagaimana diperlihatkan pada gambar di bawah ini. Berikut ini keterangan untuk gambar di bawah : fk adalah gaya gesekan kinetik, fs adalah gaya gesekan statik, F adalah gaya tarik, N adalah gaya normal, w adalah gaya berat, m adalah massa, g adalah percepatan gravitasi.
Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.
Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.
Hukum gravitasi universal Newton dirumuskan sebagai berikut:
Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.
F adalah besar dari gaya gravitasi antara kedua massa titik tersebut diukur dalam satuan Newton (N) G adalah konstanta gravitasi, besarnya sama dengan 6,67 × 10−11 N m2 kg−2. m1 adalah besar massa titik pertama, satuannya dalam kilogram (Kg) m2 adalah besar massa titik kedua, satuannya dalam kilogram (Kg) r adalah jarak antara kedua massa titik, satuannya dalam meter (M)
Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan gerak melingkar beraturanalias GMB.
Dapatkah kita mengatakan bahwa GMB merupakan gerakan yang memiliki kecepatan linear tetap ? Misalnya sebuah benda melakukan Gerak Melingkar Beraturan, seperti yang tampak pada gambar di bawah. Arah putaran benda searah dengan putaran jarum jam. bagaimana dengan vektor kecepatannya ? seperti yang terlihat pada gambar, arah kecepatan linear/tangensial di titik A, B dan C berbeda. Dengan demikian kecepatan pada GMB selalu berubah (ingat perbedaan antara kelajuan dan kecepatan, kelajuan adalah besaran skalar sedangkan kecepatan adalah besaran vektor yang memiliki besar/nilai dan arah) sehingga kita tidak dapat mengatakan kecepatan linear pada GMB tetap.
Pada gerak melingkar beraturan, besar kecepatan linear v tetap, karenanya besar kecepatan sudut juga tetap.
Jika arah kecepatan linear alias kecepatan tangensial selalu berubah, bagaimana dengan arah kecepatan sudut ? arah kecepatan sudut sama dengan arah putaran partikel, untuk contoh di atas arah kecepatan sudut searah dengan arah putaran jarum jam. Karena besar maupun arah kecepatan sudut tetap maka besaran vektor yang tetap pada GMB adalah kecepatan sudut. Dengan demikian, kita bisa menyatakan bahwa GMB merupakan gerak benda yang memiliki kecepatan sudut tetap.
Pada GMB, kecepatan sudut selalu tetap (baik besar maupun arahnya). Karena kecepatan sudut tetap, maka perubahan kecepatan sudut atau percepatan sudut bernilai nol. Percepatan sudut memiliki hubungan dengan percepatan tangensial, sesuai dengan persamaan
Karena percepatan sudut dalam GMB bernilai nol, maka percepatan linear juga bernilai nol. Jika demikian, apakah tidak ada percepatan dalam Gerak Melingkar Beraturan (GMB) ?
Pada GMB tidak ada komponen percepatan linear terhadap lintasan, karena jika ada maka lajunya akan berubah. Karena percepatan linear alias tangensial memiliki hubungan dengan percepatan sudut, maka percepatan sudut juga tidak ada dalam GMB. Yang ada hanya percepatan yang tegak lurus terhadap lintasan, yang menyebabkan arah kecepatan linear berubah-ubah. Sekarang mari kita tinjau percepatan ini.
PERCEPATAN SENTRIPETAL
Percepatan tangensial didefinisikan sebagai perbandingan perubahan kecepatan dengan selang waktu yang sangat singkat, secara matematis dirumuskan sebagai berikut :
Sekarang kita turunkan persamaan untuk menentukan besar percepatan sentripetal alias percepatan radial(aR)
Kita tulis semua kecepatan dengan v karena pada GMB kecepatan tangensial benda sama (v1 = v2 = v).
Benda yang melakukan gerakan dengan lintasan berbentuk lingkaran dengan jari-jari (r) dan laju tangensial tetap (v) mempunyai percepatan yang arahnya menuju pusat lingkaran dan besarnya adalah :
Berdasarkan persamaan percepatan sentripetal tersebut, terlihat bahwa nilai percepatan sentripetal bergantung pada kecepatan tangensial dan radius/jari-jari lintasan (lingkaran). Dengan demikian, semakin cepat laju gerakan melingkar, semakin cepat terjadi perubahan arah dan semakin besar radius, semakin lambat terjadi perubahan arah.
Arah vektor percepatan sentripetal selalu menuju ke pusat lingkaran, tetapi vektor kecepatan linear menuju arah gerak benda secara alami (lurus), sedangkan arah kecepatan sudut searah dengan putaran benda. Dengan demikian, vektor percepatan sentripetal dan kecepatan tangensial saling tegak lurus atau dengan kata lain pada Gerak Melingkar Beraturan arah percepatan dan kecepatan linear/tangensial tidak sama. Demikian juga arah percepatan sentripetal dan kecepatan sudut tidak sama karena arah percepatan sentripetal selalu menuju ke dalam/pusat lingkaran sedangkan arah kecepatan sudut sesuai dengan arah putaran benda (untuk kasus di atas searah dengan putaran jarum jam).
Kita dapat menyimpulkan bahwa dalam Gerak Melingkar Beraturan :
besar kecepatan linear/kecepatan tangensial adalah tetap, tetapi arah kecepatan linear selalu berubah setiap saat
kecepatan sudut (baik besar maupun arah) selalu tetap setiap saat
percepatan sudut maupun percepatan tangensial bernilai nol
dalam GMB hanya ada percepatan sentripetal
PERIODE DAN FREKUENSI
Gerak melingkar sering dijelaskan dalam frekuensi (f) sebagai jumlah putaran per detik. Periode (T) dari benda yang melakukan gerakan melingkar adalah waktu yang diperlukan untuk menyelesaikan satu putaran. Hubungan antara frekuensi dengan periode dinyatakan dengan persamaan di bawah ini :
Dalam satu putaran, benda menempuh lintasan linear sepanjang satu keliling lingkaran (2 phi r), di mana r merupakan jarak tepi lingkaran dengan pusat lingkaran. Kecepatan linear merupakan perbandingan antara panjang lintasan linear yang ditempuh benda dengan selang waktu tempuh. Secara matematis dirumuskan sebagai berikut :
Sekarang kita tulis kembali persamaan Gerak Melingkar Beraturan (GMB) yang telah kita turunkan di atas ke dalam tabel di bawah ini :
Persamaan fungsi Gerak Melingkar Beraturan (GMB)
Pada Gerak Melingkar Beraturan, kecepatan sudut selalu tetap (baik besar maupun arahnya), di mana kecepatan sudut awal sama dengan kecepatan sudut akhir. Karena selalu sama, maka kecepatan sudut sesaat sama dengan kecepatan sudut rata-rata.
Gerak melingkar berubah beraturan
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut tetap. Dalam gerak ini terdapat percepatan tangensial (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).
Kinematika GMBB adalah
dengan adalah percepatan sudut yang bernilai tetap dan adalah kecepatan sudut mula-mula.
Persamaan parametrik
Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:
titik awal gerakan dilakukan
kecepatan sudut putaran (yang berarti suatu GMB)
pusat lingkaran
untuk kemudian dibuat persamaannya .
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan yang diperoleh melalui:
Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu
dengan dua konstanta dan yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai , maka dapat ditentukan nilai dan :
Perlu diketahui bahwa sebenarnya
karena merupakan sudut awal gerak melingkar.
Hubungan antar besaran linier dan angular
Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.
Kecepatan tangensial dan kecepatan sudut
Kecepatan linier total dapat diperoleh melalui
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
dengan
diperoleh
sehingga
Percepatan tangensial dan kecepatan sudut
Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
dengan
diperoleh
sehingga
Kecepatan sudut tidak tetap
Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa
dengan percepatan sudut dan kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.
Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
di mana adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara , dan melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.
Kecepatan sudut
Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh
dengan
Dapat dibuktikan bahwa
sama dengan kasus pada GMB.
Percepatan total
Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikan
yang dapat disederhanakan menjadi
Selanjutnya
yang umumnya dituliskan
dengan
yang merupakan percepatan sudut, dan
yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.
Gerak berubah beraturan
Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.